An Ellipsoid Algorithm for the Computation of Fixed Points
نویسندگان
چکیده
منابع مشابه
An Interior Ellipsoid Algorithm for Fixed Points
We consider the problem of approximating xed points of non smooth con tractive functions with using of the absolute error criterion In we proved that the upper bound on the number of function evaluations to compute approximations is O n ln ln q ln n in the worst case where q is the contraction factor and n is the dimension of the problem This upper bound is achieved by the circumscribed ellipso...
متن کاملAn Explicit Viscosity Iterative Algorithm for Finding Fixed Points of Two Noncommutative Nonexpansive Mappings
We suggest an explicit viscosity iterative algorithm for finding a common element in the set of solutions of the general equilibrium problem system (GEPS) and the set of all common fixed points of two noncommuting nonexpansive self mappings in the real Hilbert space.
متن کاملCircumscribed ellipsoid algorithm for fixed-point problems
We present a new implementation of the almost optimal Circumscribed Ellipsoid (CE) Algorithm for approximating fixed points of nonexpanding functions, as well as of functions that may be globally expanding, however, are nonexpanding/contracting in the direction of fixed points. Our algorithm is based only on function values, i.e., it does not require computing derivatives of any order. We utili...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 1993
ISSN: 0885-064X
DOI: 10.1006/jcom.1993.1013